Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(8): 11873-11885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224442

RESUMO

Phytoremediation is a widely used and cost-effective technique for in situ remediation of heavy metals. Brassica napus L. genotype with high Cd accumulation and strong Cd tolerance is an ideal candidate for phytoremediation. In this study, a hydroponic experiment was conducted to select a Brassica napus genotype with either high or low Cd accumulation from a panel of 55 genotypes. The physiological mechanisms governing Cd accumulation and Cd tolerance were then explored. BN400 and BN147 were identified as the high and low Cd accumulating genotypes, respectively. Additionally, BN400 exhibited greater tolerance to Cd stress compared to BN147. Root morphology analysis revealed that BN400 exhibited longer root length, smaller root surface area and root volume, and less root tips but bigger root diameter than BN147. Subcellular Cd distribution showed that the Cd concentrations in the cell wall and vacuole in shoot were significantly higher in BN400 than in BN147, whereas the opposite trend was observed in the roots.. Pectate/protein-integrated Cd was found to be the predominant form of Cd in both shoots and roots, with significantly higher levels in BN400 compared to BN147 in the shoot, but the opposite trend was observed in the roots. These results suggest that the long fine roots play a role in Cd accumulation. The high Cd accumulating genotype was able to retain Cd in leaf cell walls and vacuoles, and Cd was mainly present in the form of pectate/protein-integrated Cd, which contributes to its strong Cd tolerance. These findings have important implications for the screening and breeding of Brassica napus genotypes with high Cd accumulation for phytoremediation purposes.


Assuntos
Brassica napus , Metais Pesados , Poluentes do Solo , Cádmio/análise , Melhoramento Vegetal , Metais Pesados/análise , Hidroponia , Poluentes do Solo/análise , Raízes de Plantas , Biodegradação Ambiental
2.
J Hazard Mater ; 465: 133365, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163407

RESUMO

The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Capsicum , Poluentes do Solo , Cádmio/metabolismo , Capsicum/genética , Capsicum/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Poluentes do Solo/metabolismo , Nitrito Redutases/metabolismo , Proteínas de Arabidopsis/genética
3.
Environ Sci Pollut Res Int ; 30(45): 101168-101177, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648912

RESUMO

Cadmium (Cd) contamination and boron (B) deficiency are two major challenges associated with the farmland soils in Southern China. Therefore, this study was conducted to examine the impacts of B supply on Cd accumulation in water spinach (Ipomoea aquatica) using a cultivar (T308) with high Cd accumulation. The study further investigated the physiological mechanism behind the changes in Cd accumulation due to B supply. The findings revealed that B supply substantially reduced the Cd concentration in the leaves of water spinach by 41.20% and 37.16% under the Cd stress of 10 µM and 25 µM, respectively. Subcellular distribution of Cd showed that the Cd content as well as its proportion in root cell wall (RCW) increased significantly after B supply. Fourier transform infrared spectroscopy showed significant enrichment of negatively charged groups (such as -OH, -COOH, and -NH2) in the RCW after B supply. Overall, B supply also enhanced covalently bound pectin (CSP) content as well as the Cd content linked with CSP under Cd stress. These observations revealed that B regulated the Cd chelation in RCW, thereby reducing the amassment of Cd in water spinach.

4.
Sci Total Environ ; 903: 166264, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579800

RESUMO

Soil cadmium (Cd) contamination threatens food safety and human health, particularly in developing countries. Previously, we have proposed that boron (B) could reduce Cd uptake and accumulation in hot peppers (Capsicum annuum) by regulating the expression of genes related to Cd transport in roots. However, only few studies have examined the role of B in plant leaves under Cd stress. It is unclear how B induces the expression of relevant genes and metabolites in hot pepper leaves and to what extent B is involved in leaf growth and Cd accumulation. The purpose of this study was to investigate the effects of B on growth and Cd accumulation in hot pepper leaves by determining physiological parameters and transcriptome sequencing. The results showed that B application significantly improved the concentration of chlorophyll a and intercellular CO2, stomatal conductance, and photosynthetic and transpiration rates by 18-41 % in Cd-stressed plants. Moreover, B enhanced Cd retention in the cell wall by upregulating the expression levels of pectin-, lignin-, and callose-related genes and improving the activity of pectin methylesterase by 30 %, resulting in an approximate 31 % increase in Cd retention in the cell wall. Furthermore, B application not only enhanced the expression levels of genes related to antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and their activities by 28-40 %, thereby counteracting Cd-induced oxidative stress, but also improved Cd chelation, sequestration, and exclusion by upregulating the expression levels of genes related to sulfur metabolism, heavy metal-associated isoprenylated plant protein (HIPP), and transporters such as vacuolar cation/proton exchanger (CAX3), metal-nicotianamine transporter (YSL), ATP-binding cassette (ABC), zinc/iron transporters (ZIP) and oxic-compound detoxification (DTX), ultimately reinforcing Cd tolerance. Together, our results suggest that B application reduces the negative effects of Cd on leaf growth, promotes photosynthesis, and decreases Cd transfer to fruits through its sequestration and retention.

5.
Exp Ther Med ; 26(1): 320, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273757

RESUMO

Pachymic acid (Pac), a major bioactive constituent of Poria cocos, is an antioxidant that inhibits triglyceride (TG) accumulation. To the best of our knowledge, the present study investigated for the first time whether Pac activated sirtuin 6 (SIRT6) signaling to alleviate oleic acid (OA)-palmitic acid (PA)-induced lipid metabolism disorders in mouse primary hepatocytes (MPHs). In the present study, MPHs challenged with Pac were used to test the effects of Pac on intracellular lipid metabolism. Molecular docking studies were performed to explore the potential targets of Pac in defending against lipid deposition. MPHs isolated from liver-specific SIRT6-deficient mice were subjected to OA + PA incubation and treated with Pac to determine the function and detailed mechanism. It was revealed that Pac activated SIRT6 by increasing its expression and deacetylase activity. Pa prevented OA + PA-induced lipid deposition in MPHs in a dose-dependent manner. Pac (50 µM) administration significantly reduced TG accumulation and increased fatty acid oxidation rate in OA + PA-incubated MPHs. Meanwhile, as per the results of molecular docking and relative mRNA levels, Pac activated SIRT6 and increased SIRT6 deacetylation levels. Furthermore, SIRT6 deletions in MPHs abolished the protective effects of Pac against OA + PA-induced hepatocyte lipid metabolism disorders. The present study demonstrated that Pac alleviates OA + PA-induced hepatocyte lipid metabolism disorders by activating SIRT6 signaling. Overall, SIRT6 signaling increases oxidative stress burden and promotes hepatocyte lipolysis.

6.
Adv Healthc Mater ; 12(22): e2300267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231587

RESUMO

Developing multifunctional nanozymes with photothermal-augmented enzyme-like reaction dynamics in the second near-infrared (NIR-II) biowindow is of significance for nanocatalytic therapy (NCT). Herein, DNA-templated Ag@Pd alloy nanoclusters (DNA-Ag@Pd NCs) are prepared as a kind of novel noble-metal alloy nanozymes by using cytosine-rich hairpin-shaped DNA structures as growth templates. DNA-Ag@Pd NCs exhibit high photothermal conversion efficiency (59.32%) under 1270 nm laser and photothermally augmented peroxidase-mimicking activity with synergetic enhancement between Ag and Pd. In addition, hairpin-shaped DNA structures on the surface of DNA-Ag@Pd NCs endow them with good stability and biocompatibility in vitro and in vivo, and enhanced permeability and retention effect at tumor sites. Upon intravenous injection, DNA-Ag@Pd NCs demonstrate high-contrast NIR-II photoacoustic imaging-guided efficient photothermal-augmented NCT of gastric cancer. This work provides a strategy to synthesize versatile noble-metal alloy nanozymes in a bioinspired way for highly efficient therapy of tumors.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Luz , Neoplasias/terapia , Terapia Fototérmica , Ligas , Fototerapia , Linhagem Celular Tumoral
7.
J Agric Food Chem ; 71(6): 2784-2794, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727512

RESUMO

Proteomic analysis and biochemical tests were employed to investigate the critical biological processes responsible for the different cadmium (Cd) accumulations between two water spinach (Ipomoea aquatica) cultivars, QLQ and T308. QLQ, with lower shoot Cd accumulation and translocation factor than T308, possessed higher expression of cell wall biosynthesis and modification proteins in roots, together with higher lignin and pectin contents, higher pectin methylesterase activity, and lower pectin methylation. The results demonstrated that QLQ could more effectively restrict root-to-shoot Cd translocation by compartmentalizing more Cd in root cell walls. In contrast, T308 showed higher expression of the tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and heavy metal transporter proteins, accompanied by higher GSH content and glutathione S-transferase (GST) and glutathione reductase (GR) activity, which accelerated Cd uptake and translocation in T308. These findings revealed several critical biological processes responsible for cultivar-dependent Cd accumulation in water spinach, which are important for elucidating Cd accumulation and transport mechanisms in different cultivars.


Assuntos
Fenômenos Biológicos , Ipomoea , Poluentes do Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Ciclo do Ácido Cítrico , Ipomoea/química , Proteômica , Pectinas/metabolismo , Parede Celular/química , Raízes de Plantas/química
8.
Front Plant Sci ; 13: 953717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176683

RESUMO

To date, Cd contamination of cropland and crops is receiving more and more attention around the world. As a plant hormone, abscisic acid (ABA) plays an important role in Cd stress response, but its effect on plant Cd uptake and translocation varies among plant species. In some species, such as Arabidopsis thaliana, Oryza sativa, Brassica chinensis, Populus euphratica, Lactuca sativa, and Solanum lycopersicum, ABA inhibits Cd uptake and translocation, while in other species, such as Solanum photeinocarpum and Boehmeria nivea, ABA severs the opposite effect. Interestingly, differences in the methods and concentrations of ABA addition also triggered the opposite result of Cd uptake and translocation in Sedum alfredii. The regulatory mechanism of ABA involved in Cd uptake and accumulation in plants is still not well-established. Therefore, we summarized the latest studies on the ABA synthesis pathway and comparatively analyzed the physiological and molecular mechanisms related to ABA uptake, translocation, and detoxification of Cd in plants at different ABA concentrations or among different species. We believe that the control of Cd uptake and accumulation in plant tissues can be achieved by the appropriate ABA application methods and concentrations in plants.

9.
J Ethnopharmacol ; 294: 115360, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568116

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Huayu decoction (JHD) is a traditional Chinese medicinal preparation used to treat a variety of malignant tumors including HCC, although the underlying mechanism remains unknown. Exosomes in the tumor microenvironment mediate intercellular signaling among cancer cells, but precise contributions to hepatocellular carcinoma (HCC) progression are still elusive. AIM OF THE STUDY: In this work, the main objective was to examine the mechanisms underlying anti-tumor effects of JHD and the potential contributions of exosomal signaling. MATERIALS AND METHODS: LC-MS/MS was used for quality control of JDH preparation, while nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blotting were used for verification of exosomes. In vitro assays included CCK8, wound healing assay, transwell invasion assay, qRT-PCR and western blotting were performed to investigate the effects of JHD on HCC cells and the molecular mechanism. Furthermore, the effects of JHD on subcutaneous tumor model of nude mice were also determined. RESULTS: JHD inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cultured HCC cells. Further, exosomes isolated from EMT-induced HCC cells promoted the migration, invasion and EMT of other cultured HCC cells, while exosomes isolated from EMT-induced HCC cells after JHD treatment had little effect. In addition, JHD reduced the expression of exosomal miR-23a-3p in cultured HCC cells. miR-23a-3p was significantly up-regulated in tumor compared with that in adjacent non-cancerous tissues of patients with HCC. HCC patients with high miR-23a-3p expression had poor overall survival after hepatectomy. Meanwhile, miR-23a-3p enhanced HCC cell proliferation, EMT, and expression of Smad signaling proteins. More importantly, overexpression of miR-23a-3p can reverse the inhibition of EMT and Smad signaling pathway caused by JHD treatment. In vivo assays, treatment with JHD also reduced the growth of HCC-derived tumors in nude mice, reduced the expression of miR-23a-3p in serum exosomes and the level of EMT in tumor cells. CONCLUSIONS: the antitumor effects of JHD on HCC are mediated at least in part by inhibition of EMT due to downregulation of exosome-mediated intercellular miR-23a-3p transfer and subsequent blockade of Smad signaling. Disrupting this exosomal miR-23a-3p/Smad signaling pathway may be an effective treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Microambiente Tumoral
10.
J Hazard Mater ; 432: 128713, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35316635

RESUMO

Large areas of farmland in southern China are facing environmental problems such as cadmium (Cd) contamination and boron (B) deficiency. The aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in hot pepper (Capsicum annuum) by B application. A hydroponic experiment was conducted to compare the subcellular distribution of Cd, transcriptome profile, degree of pectin methylation, and glutathione (GSH) synthesis in the roots of hot pepper under different B and Cd conditions. Boron supply promoted root cell wall biosynthesis and pectin demethylation by upregulating related genes and increasing cell wall Cd concentration by 28%. In addition, with the application of B, the proportion of Cd in root cell walls increased from 27% to 37%. Boron supplementation upregulated sulfur metabolism-related genes but decreased cysteine and GSH contents in the roots. As a result, shoot Cd concentration decreased by 27% due to the decrease in GSH, a critical long-distance transport carrier of Cd. Consequently, B supply could reduce the uptake, translocation, and accumulation of Cd in hot pepper by retaining Cd in the root cell walls and decreasing GSH content.


Assuntos
Capsicum , Poluentes do Solo , Boro/análise , Cádmio/análise , Cádmio/toxicidade , Parede Celular/química , Glutationa/análise , Pectinas , Raízes de Plantas/química , Poluentes do Solo/análise
11.
Environ Sci Pollut Res Int ; 29(27): 41375-41385, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35089521

RESUMO

MicroRNAs (miRNAs) play important roles in plant response to Cd stress. In our previous study, we observed significant differences in the expression levels of IamiR-4-3p between high-Cd and low-Cd cultivars of water spinach. The function of IamiR-4-3p was investigated by using wild type Arabidopsis (WT), Arabidopsis transfected with empty vector pCambia1302 (CK), and Arabidopsis transfected with IamiR-4-3p + vector pCambia1302 (p35S::miR-4-3p) in this study. In p35S::miR-4-3p Arabidopsis, the expression levels of GST3 and AWPM19-like were reduced by 20% and 24%. Under Cd treatment, higher root and shoot Cd concentrations were detected in the transgenic p35S::miR-4-3p Arabidopsis. MDA and H2O2 concentrations were positively correlated with the Cd concentrations in all Arabidopsis. The elevated GSH pool in p35S::miR-4-3p Arabidopsis should compensate for its restricted GST3 expression in response to Cd-induced oxidative stress. Lower F1 (cell wall) and higher F2 (organelle) and F3 (soluble fraction) Cd concentrations were observed along with the reduced ABA level in p35S::miR-4-3p Arabidopsis, which could induce a weakened apoplastic barrier and higher Cd accumulation and translocation in roots. It is suggested that IamiR-4-3p is able to reduce the expression levels of GST3 and AWPM19-like, resulting in higher Cd uptake and translocation in Arabidopsis.


Assuntos
Arabidopsis , Ipomoea , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Ipomoea/genética , MicroRNAs/metabolismo
12.
Environ Sci Pollut Res Int ; 29(24): 36824-36838, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064501

RESUMO

We aimed to understand the molecular mechanism of differential cadmium (Cd) accumulation in two cultivars of sweet potato and to clarify the effects of potassium (K) supply on Cd accumulation. Comparative transcriptomes were employed to identify key genes and pathways using a low-Cd (N88) and a high-Cd cultivar (X16) in a pot experiment. The antioxidant capacity and cell wall components of root tips were analyzed to account for the effect of K regulating Cd accumulation in N88 via a hydroponic experiment. Transcriptome analysis revealed that 29 and 20 genes were differentially expressed in N88 and X16, respectively, when comparing the control with the two Cd treatments. X16 had more differentially expressed genes (DEGs), including 2649 common up-regulated and 3173 common down-regulated than N88 in any treatment. GO and KEGG analyses showed that the DEGs were assigned and enriched in different pathways. Some critical DEGs such as PDR, HMA3, COPT5, CAX3, GAUT, CCR, AUX1, CAT, SOD, GSR, and GST were identified. The DEGs were involved in pathways including heavy metal transport or detoxification, cell wall biosynthesis, plant hormone signal transduction, and glutathione metabolism. Additionally, K supply substantially decreased Cd accumulation and reactive oxygen species production and promoted the production of cellulose, pectin and lignin in the root tips when exposed to Cd. Several critical DEGs associated with heavy metal transport and cell wall biosynthesis were responsible for the difference of Cd accumulation between the two cultivars. Application of K could help decrease Cd accumulation in sweet potato.


Assuntos
Ipomoea batatas , Metais Pesados , Cádmio/análise , Perfilação da Expressão Gênica , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma
13.
Front Plant Sci ; 13: 1097998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699861

RESUMO

Excessive cadmium (Cd) accumulation in vegetables due to farmland pollution constitutes a serious threat to human health. Eggplant has a tendency to accumulate Cd. To investigate the mechanism of the differences in Cd accumulation levels between high-Cd (BXGZ) and low-Cd (MYQZ) eggplant cultivar, physiological and biochemical indicators and mRNA expression of eggplant were examined using photosynthetic apparatus, biochemical test kits, Fourier transform infrared (FTIR) spectroscopy and transcriptome sequencing, etc. The results of biochemical test kits and FTIR revealed that MYQZ enhanced pectin methylesterase (PME) activity, and lignin and pectin content in the root cell wall, which was associated with the upregulation of PME, cinnamyl-alcohol dehydrogenase and peroxidase (PODs). Higher levels of cysteine and glutathione (GSH) contents and upregulation of genes associated with sulfur metabolism, as well as higher expression of ATP-binding cassette transporters (ABCs), cation exchangers (CAX) and metal tolerance proteins (MTPs) were observed in MYQZ. In BXGZ, the higher stomatal density and stomatal aperture as well as higher levels of Ca2+ binding protein-1 (PCaP1) and aquaporins and lower levels of A2-type cyclins (CYCA2-1) are consistent with an enhanced transpiration rate in BXGZ. Furthermore, a more developed root system was shown to be associated with higher levels of auxin response factor (ARF19), GATA transcription factors (GATA4, 5 and 11) and auxin efflux carrier component (PIN5) in BXGZ. In conclusion, highly active PME, and higher levels of lignin and pectin in MYQZ are expected to reduce Cd toxicity, while Cd translocation can be inhibited with the help of ABC and other Cd transporters. As for BXGZ, the uptake and translocation of Cd were enhanced by the developed root system and stronger transpiration.

14.
Ecotoxicol Environ Saf ; 225: 112776, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537586

RESUMO

Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.


Assuntos
Oryza , Plântula , Boro/toxicidade , Cádmio/toxicidade , Produtos Agrícolas , Oryza/genética
15.
Ecotoxicol Environ Saf ; 225: 112787, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544020

RESUMO

Cadmium (Cd) contamination of croplands has become a threat to crop food safety and human health. In this study, we investigated the effect of sulfur on the growth of water spinach under Cd stress and the amount of Cd accumulation by increasing the soil sulfate content. We found that the biomass of water spinach significantly increased after the application of sulfur while the shoot Cd concentration was considerably reduced (by 31%). The results revealed that sulfur could promote the expression of PME and LAC genes, accompanied by an increase in PME activity and lignin content. Also, the cell wall Cd content of water spinach roots was significantly increased under sulfur treatment. This finding suggests that sulfur could enhance the adsorption capacity of Cd by promoting the generation of cell wall components, thereby inhibiting the transportation of Cd via the apoplastic pathway. In addition, the higher expression of Nramp5 under the Cd1S0 (concentration of Cd and sulfur are 2.58 and 101.31 mg/kg respectively) treatment led to increased Cd uptake. The CAX3 and ABC transporters and GST were expressed at higher levels along with a higher cysteine content and GSH/GSSR value under Cd1S1 (concentration of Cd and sulfur are 2.60 and 198.36 mg/kg respectively) treatment, which contribute to the Cd detoxification and promotion of Cd compartmentalization in root vacuoles, thereby reducing the translocation of Cd to the shoot via the symplastic pathway.


Assuntos
Ipomoea , Cádmio/toxicidade , Perfilação da Expressão Gênica , Humanos , Enxofre , Meios de Transporte
16.
Adv Sci (Weinh) ; 8(17): e2100386, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34247445

RESUMO

Broadband near-infrared (NIR) photothermal and photoacoustic agents covering from the first NIR (NIR-I) to the second NIR (NIR-II) biowindow are of great significance for imaging and therapy of cancers. In this work, ultrathin two-dimensional plasmonic PtAg nanosheets are discovered with strong broadband light absorption from NIR-I to NIR-II biowindow, which exhibit outstanding photothermal and photoacoustic effects under both 785 and 1064 nm lasers. Photothermal conversion efficiencies (PCEs) of PtAg nanosheets reach 19.2% under 785 nm laser and 45.7% under 1064 nm laser. The PCE under 1064 nm laser is higher than those of most reported inorganic NIR-II photothermal nanoagents. After functionalization with folic acid modified thiol-poly(ethylene glycol) (SH-PEG-FA), PtAg nanosheets endowed with good biocompatibility and 4T1 tumor-targeted function give high performances for photoacoustic imaging (PAI) and photothermal therapy (PTT) in vivo under both 785 and 1064 nm lasers. The effective ablation of tumors in mice can be realized without side effects and tumor metastasis by PAI-guided PTT of PtAg nanosheets under 785 or 1064 nm laser. The results demonstrate that the prepared PtAg nanosheets with ultrathin thickness and small size can serve as a promising phototheranostic nanoplatform for PAI-guided PTT of tumors in both NIR-I and NIR-II biowindows.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Platina/química , Prata/química , Nanomedicina Teranóstica/métodos , Animais , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Raios Infravermelhos , Camundongos , Nanopartículas
17.
ACS Nano ; 15(7): 12171-12179, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269058

RESUMO

Spatially controlled preparation of heterostructures composed of layered materials is important in achieving interesting properties. Although vapor-phased deposition methods can prepare vertical and lateral heterostructures, liquid-phased methods, which can enable scalable production and further solution processes, have shown limited controllability. Herein, we demonstrate by using wet chemical methods that metallic Sn0.5Mo0.5S2 nanosheets can be deposited epitaxially on the edges of semiconducting SnS2 nanoplates to form SnS2/Sn0.5Mo0.5S2 lateral heterostructures or coated on both the edges and basal surfaces of SnS2 to give SnS2@Sn0.5Mo0.5S2 core@shell heterostructures. They also showed good light-to-heat conversion ability due to the metallic property of Sn0.5Mo0.5S2. In particular, the core@shell heterostructure showed a higher photothermal conversion efficiency than the lateral counterpart, largely due to its randomly oriented and polycrystalline Sn0.5Mo0.5S2 layers with larger interfacing area for multiple internal light scattering.

18.
Environ Sci Pollut Res Int ; 28(41): 57739-57750, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091834

RESUMO

Excessive accumulation of cadmium (Cd) in vegetables poses a serious threat to human health; therefore, it is urgent to screen and cultivate vegetable cultivars with low Cd accumulation in the edible parts. Eggplant has a high tendency for Cd accumulation, but research on its low Cd accumulation cultivars is still rare. In this study, to screen low-Cd cultivars, 30 eggplant cultivars were screened using soils containing 0.22 mg/kg, 2.9 mg/kg (low-Cd), and 4.7 mg/kg of Cd (high-Cd). MYCQ and ZGQ were confirmed as low-Cd cultivars, BXGZ and WCCQ were confirmed as high-Cd cultivars, and a 2.52-3.88-fold difference in Cd concentration was observed in their fruits. The subcellular distribution revealed that the root cell wall and vacuole Cd concentrations of a typical low-Cd cultivar (MYCQ) were significantly higher than those of a typical high-Cd cultivar (BXGZ); however, the Cd concentrations in the cell wall and vacuole in fruits, leaves, and stems were significantly lower in MYCQ than in BXGZ. These results indicated that the low-Cd cultivars of eggplant could lessen Cd toxicity through the elevated Cd retention and sequestration levels of root cell walls and vacuoles, thus reducing Cd transport from roots to aboveground tissues, leading to low Cd accumulation. The findings of this study can provide a physiological and biochemical foundation for the screening and breeding of low-Cd cultivars of fruit vegetables and demonstrates that the application of low-Cd cultivars is necessary for food safety in humans.


Assuntos
Poluentes do Solo , Solanum melongena , Cádmio/análise , Humanos , Melhoramento Vegetal , Raízes de Plantas/química , Poluentes do Solo/análise
19.
Environ Sci Pollut Res Int ; 28(37): 52587-52597, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34014486

RESUMO

Large areas of soil are boron (B) deficient and contaminated with cadmium (Cd) in southern China. The aim of this study was to select the optimal B supply level and elucidate the underlying physiological and biochemical mechanisms to understand how B reduces Cd influx into root cells of hot pepper (Capsicum annuum). An experiment was conducted to investigate the changes in Cd accumulation with B supply. Hot pepper seedlings were grown in two nutrient solutions containing 0.05- and 0.2-mg Cd L-1 and supplied with six different B concentrations for 2 weeks. The other experiment was conducted to determine the Cd2+ flux into cells, cell wall components, antioxidative ability, and plasmalemma permeability of root tips of hot pepper exposed to 0.1-mg Cd L-1 in the presence and absence of B. The results showed that the optimal B concentration to promote plant growth and reduce Cd accumulation was 0.25 mg L-1. Moreover, B application significantly decreased Cd2+ influx into cells, increased the contents of lignin and pectin, enhanced the activities of antioxidant enzymes, reduced the production of reactive oxygen species, and decreased membrane peroxidation and permeability. Overall, boron in moderation can promote plant growth, maintain the normal structures and functions of the cell wall and membrane, and thus decrease Cd2+ influx into root cells and subsequently Cd translocation to shoots. Consequently, B is a reliable inhibitor of Cd uptake, and the functional and structural integrity of cell walls and membranes may have some relevance to reduced Cd uptake after B application.


Assuntos
Capsicum , Poluentes do Solo , Boro/farmacologia , Cádmio/análise , Parede Celular , Permeabilidade , Raízes de Plantas/química , Poluentes do Solo/análise
20.
Sci Total Environ ; 768: 144430, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736337

RESUMO

Although hepatic metabolism of hexabromocyclododecanes (HBCDs) played critical roles in the selective bioaccumulation of HBCDs in humans, the hepatic metabolism patterns of its enantiomers remained ambiguous. Aiming to elucidate the mechanism on hepatic metabolism of hexabromocyclododecanes (HBCDs) enantiomers, the enantiomers ((+)-α-HBCD, (-)-α-HBCD, (+)-γ-HBCD, and (-)-γ-HBCD), the diastereoisomers (α-, ß-, and γ-HBCDs) and the mixed of α- and γ-HBCDs were incubated with human HepG2 cell under different exposure levels in the present study. The clearance percentages ranked as γ-HBCD enantiomers >ß-HBCD enantiomers >α-HBCD enantiomers at the same exposure levels. The clearance percentages of (+)- and (-)-α-HBCDs increased when cells were exposed to racemic α-HBCD and the mixture of racemic α- and γ-HBCDs (p < 0.05). (-)-γ-HBCD was more resistant to human hepatic metabolism than (+)-γ-HBCD, leading to the enantiomer fractions (EFs) of γ-HBCD lower than 0.50. (-)-α-HBCD was slightly more metabolized when independently exposed to α-HBCD, while (+)-α-HBCD was more preferentially metabolized after exposure to α- and γ-HBCD mixtures. Hydroxylation and debromination HBCD metabolites were identified. In addition, the different EFs of HBCDs in cells and mediums suggested the selective transfer of chiral HBCDs and HBCD metabolites through the cell membrane. This study provided new insight into the enantiomer-selective metabolism of HBCDs.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bioacumulação , Células Hep G2 , Humanos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...